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Energetic heterogeneity of sorbents: numerical calculation of affinity distributions 

The phenomenon of energetic heterogeneity and its quantitative characteristics 
Physi- and chemisorption from solutions on mineral (hydr)oxides and chemically modified silicas, 

binding chemical species to humic acids and another amorphous solid surfaces [1-3] are often 
influenced by effects of energetic heterogeneity. In spite of the long history, the problem of estimating 
the energetic heterogeneity of materials is far from being resolved. Two types of heterogeneity should 
be distinguished. First of them, the biographic heterogeneity [4], is the intrinsic feature of materials. It 
may be due to the inhomogeneous topography of a surface, the presence of pores of different shape 
and size, the chemical heterogeneity of a surface, etc. The degree of occupation of binding sites by 
bonded species does not affect the scope of biographic heterogeneity. In the contrast, if the affinity of 
binding sites to fixed entity is changed in the course of sorption, this phenomenon is to be attributed to 
the evolutionary heterogeneity [5]. The most common causes of it are electrostatic interactions, for 
instance, changes of surface charge and electrostatic potential in dependence on the ion sorption 
degree. 

Here we restrict ourselves to the simplest case of monocomponent binding, namely, fixation of 
species M from solution by binding centers Q  ∗ which leads to the formation of sorption complexes 
MQ : 

+ =
K

M Q MQ ,                                                                  (1) 
where K is the affinity constant. 

To characterize quantitatively the effects of energetic heterogeneity one should 1) to measure the 
dependence of f([M]) on [M] where 0 ≤ f([M]) ≤ 1 is a fraction of binding centers Q  occupied with M, 
square brackets denote equilibrium concentrations of species in solution; 2) to postulate a model which 
allows to separate effects of biographic and evolutionary heterogeneities and 3) to calculate 
numerically the model parameters. To perform step 3 it is necessary to solve the linear first kind 
Fredholm equation: 

local

0
([ ]) ([ ], ) ( )

∞
= θ ⋅∫f M M K p K dK ,                                             (2) 

with respect to p(K), where p(K) is the nonnegative density function of affinity constants K; the kernel 
of the integral equation θlocal([M], K) is the local binding isotherm. The density function p(K) describes 
the biographic heterogeneity, while the evolutionary heterogeneity is taken into consideration by 
choosing an appropriate expression to the local isotherm. Useful characteristics of density function 
p(K) are  
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In addition to p(K), one can use the integral distribution function 

0
( ) ( )= ∫

K
P K p x dx ,  0 ≤ P(K) ≤ 1,                                           (6) 

to measure the biographic energetic heterogeneity. Up to date a lot of models have been proposed to 
describe the evolutionary heterogeneity in terms of electrostatic interactions (see, for instance, ref.  
[6-15]). It should be particularly emphasized that the shape of binding isotherm does not allow to 

 
∗ Binding center Q  is assumed to be an adsorption site on the surface of a solid sorbent, a ligand grafted 
on silica surface, a functional group of humic acid and so on. 
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decide what type of energetic heterogeneity or both of them take place [2]. Thus, there is no serious 
experimental guideline to prefer one or another function for a local isotherm. In the limiting case when 
both electrostatic and lateral interactions are negligible, the kernel θlocal([M], K) reduces to the 
Langmuir isotherm 

θlocal([M], K) = [ ]
1 [

⋅
+ ⋅
K M

K M ]
.                                                        (7) 

For the sake of computational simplicity, expression (7) has been adopted for the local isotherm in 
our work. It is possible to validate this decision a posteriori. For this, it is necessary to measure 
binding isotherms varying the ionic strength of solution (I), to calculate corresponding density 
functions p(K) and to compare them. If the shapes of functions p(K) and positions of maxima do not 
depend significantly on I, it may be concluded that the choice of the Langmuir isotherm is justified 
and effects of the evolutionary heterogeneity are negligible [16]. In the opposite case, the calculated 
functions p(K) should be considered as the density functions for apparent affinity constants only. An 
additional advantage of using equation (7) for the local isotherm θlocal is a simple way to express the 
integral distribution function P(K) in terms of primary experimental data: 

2
0

[ ]τ([ ]) 1 ([ ]) ( )
(1 [ ])

∞
= − =

+ ⋅∫
MM f M P K

K M
dK .                                   (8) 

To find exact solutions of equations (2) and (8) one has to know the analytical expression for f([M]) 
and to perform the integral transformations (such as Fourier, Laplace or Stiltjes). Then, if the local 
isotherm is specified by the Langmuir equation, the sought density and integral distribution functions 
may be represented as follows [17-19]: 
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Unfortunately, experimental function f([M]) is a table of values rather than an analytical 
expression. Hence, only approximate numerical methods are applicable to find distribution functions. 

 
Review of computational methods used to characterize the energetic heterogeneity 
As equations (2) and (8) are the first kind Fredholm integral equations, we deal with the ill-posed 

problem. Main computational difficulties are connected with this. 
In particular, there exist many different possible solutions p(K) which fit the measured f([M]) 

values within their experimental errors. Moreover, small fluctuations in primary experimental data 
([M] or f([M])) may cause an arbitrary large fluctuations in the calculated density function p(K). Also, 
oscillatory solutions with no physical meaning may easily arise. Consequently, all methods for 
practical use have to reject non-realistic (negative or oscillating) functions p(K). 

The approximate methods for solving equation (2) may be divided into two groups. 
To avoid oscillating solutions p(K) within the methods of “local isotherm approximation”, the ill-

posed problem is transferred to a better posed one through changing the continuous local isotherm 
with an approximate discontinuous (stepwise) function. Zeldowitch [20] and Roginskii [21] were first 
to employ this approach. The Roginskii’s method (known also as “condensation approximation”) was 
comprehensively discussed and tested [1]; till now it is the most popular and commonly used tool for 
solving equation (2). During last decades the methods of “local isotherm approximation” were further 
developed (see, for instance, LINA, LOGA-1, LOGA-AS approximations described by Nederlof et al. 
[22, 23]). Errors resulting from using these methods have been comprehensively studied. Though the 
novel approaches work better than the initial Roginskii’s method [1], narrow distributions p(K) are 
always flattened and sometimes the positions of maxima are detected incorrectly [23]. Also, the use of 
these methods for describing chemisorption equilibria is unfavorable from the theoretical point of 
view. Actually, if the chemical binding without lateral interactions takes place (in particular, when 
hydrogen or metal ions react with ligands grafted on silica surface or with functional groups of humic 
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substances) there exists only one expression the form of which is analogous to the mass-action law. 
This is the Langmuir equation. 

The second group includes a wealth of general computer-oriented numerical methods. Their 
employment consists in the search of a suitable balance between the goodness of fitting measured f 
values and the smoothness of solutions p(K). The quality of approximation is commonly measured by 
the criterion 

( ) 2

1

ˆ
=

= −∑
N

k k
k

U f f ,                                                        (11) 

where k is the number of the experimental points; N is the total number of measurements;  is  the f 

value calculated for the k-th point. Solutions p(K) are found via minimization of criterion (11)
k̂f

∗, while 
the degree of smoothing of sought for functions p(K) is determined by peculiarities  of computational 
procedures.  

Sometimes, the total binding isotherm f([M]) is approximated by a smooth function  with 
few fitting parameters and the latter is substituted into equation (9) instead of f([M]). A lot of 
expressions (for instance, low-power polynomials, hyperbolas, cubic splines, the generalized 
Freundlich, Rothemund-Kernfeld, Jowanowic-Freundlich, Toth and UNILAN isotherms, the Jaroniec 
exponential equation) has been tried [24-28]. One of the most successful approaches was the 
approximation of experimental f([M]) dependence with a multi-Langmuir isotherm (as a rule, with the 
bi-Langmuir one) [29, 30]. Two disadvantages of this approach are easily seen. First, the searched 
solution p(K) depends highly on the choice of function  while the latter seems to be 
completely arbitrary. Second, functions  have only one or two, seldom three or four fitting 
parameters. As a result, sometimes measured f([M]) values are approximated roughly, and function 
p(K) is reproduced inauthentically. 

([ ])%f M

([ ])%f M
([ ])%f M

The famous early algorithm CAEDMON [31, 32] approximated the integral in formula (2) by the 
sum calculated for equidistant knots Kj. For each experimental point equation  

1

[ ]ˆ ( )
1 [ ]=

⋅
=
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J j k

k j
j kj

K M
f p K

K M
, k = 1, 2, …, N,                         (12) 

was written. Here J is the number of knots inside the interval of variation of K, Kj is the value of K at 
the j-th knot, p(Kj) is the fraction of binding centers with affinity constant Kj. So, the sought for 
function p(K) was found as a superposition of Dirac δ-functions. The non-negative least squares 
(NNLS) algorithm [33] was applied to minimize (11) in respect to p(Kj). Natural restrictions  

1
( ) 1

=
=∑

J
j

j
p K ,  p(Kj) ≥ 0,                                                     (13) 

did not prevent a numerical instability of computations at high J values. 
General methods for solving first kind integral equations [34-36] came into use in this field. They 

were based on the approximation of integral  with quadratures. The 

algorithm CAESAR [1] as well as algorithms proposed by Leunberger and Schindler [37], Bratskaya 
and Golikov [38], Garmash et al. [39] have approximated the integral with expression 
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,              (14)  

where Kj are equidistant within the interval [Kmin, Kmax]. To find unknown p(Kj), the NNLS algorithm 
was applied. To fit measured f([M]) values within experimental errors it is necessary to decrease the 

 
∗ Reasons to choose the sum of residual squares as the criterion to be minimized and possible alternatives 
have not been discussed in the literature. Perhaps, the main reason to give preference to the least squares 
estimates was connected with the desire to simplify computations to the utmost. 
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integration step ∆K. Unfortunately, if ∆K is small the solution p(K) is obtained as a “saw” with big 
teeth. In some cases the numerical stability of calculations was increased with the aid of the singular 
values decomposition (SVD) [33] included into the NNLS algorithm [1, 37]. Using the SVD technique 
has to be considered as a version of the α-regularization method (see below). Also, the discretization 
of the integral was performed in the EM algorithm [40, 41], though the authors have used their own 
iterative procedure instead of NNLS to compute unknown p(Kj) values. It has been shown that the EM 
algorithm converges and never leads to negative p(Kj). Moreover, the proper guess of p(Kj) prevents 
oscillating solutions. The main disadvantage of this algorithm is a great number of iterations needed 
for convergence (up to 200 000). 

To make the problem a better posed one, some authors [26, 30, 42, 43] searched a solution for p(K) 
in the form of an analytical function with few fitting parameters. In particular, p(K) was presented as a 
linear combination  

1
( )  ( )

=
= ⋅ϕ∑

X
i i

i
p K b K ,                                                            (15) 

where ϕi(K) are the Gaussian probabilities or γ-functions. Their parameters and coefficients bi were 
determined by the minimization of criterion (11). In some cases this heuristic approach does not 
ensure accurate estimating p(K) because at small X values there is no guarantee that the chosen 
approximation (15) is capable of approximating measured f([M]) values within experimental errors, 
while increasing X may cause the numerical instability of calculations. Besides, if there are many 
parameters to be determined, several local minima of criterion (11) may exist, and minimization loses 
unambiguity. 

To handle properly the ill-posed problem and to obtain the numerically stable solutions, an 
additional a priori information about the searched functions should be involved. The way to use such 
information was developed by Tikhonov who proposed the general methods for solving ill-posed 
problems [44]. Also, he introduced a concept of conventionally correct problems [45]. To reduce an 
ill-posed problem to a conventionally correct one it is necessary to have a quantitative information 
which allows to choose one solution from many possible solutions. For instance, the problem turns 
into conventionally correct one if the information is available which restricts a set of possible solutions 
to a compact. An example of the compact is a set of non-decreasing functions with upper and lower 
bounds. The solution of a conventionally correct problem on the compact is numerically stable. 

If the desired quantitative information is not available, the problem becomes an essentially 
incorrect one [45]. In this case, to ensure the numerical stability of calculations it is necessary to 
assume the smoothness of searched solution. Within the mentioned above numerical algorithms this is 
done implicitly. In our mind, the method of Tikhonov’s α-regularization is of more objective nature. 
Applying the method, one should minimize, in p(K), the new functional 

α α Ω( )= + ⋅U U p .                                                           (16) 
rather than criterion (11). Here Ω(p) is a nonnegative dampening function of p(K), α is a positive 
regularization parameter. As noted above, conditions (13) have to be imposed on the searched 
function. House was the first who used the α-regularization method in estimating the energetic 
heterogeneity [46]. 

In the general case of the n-order α-regularization the regularizer Ω(p) is specified as follows [47]: 

 Ω(p) = 
2
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where all coefficients qj ≥ 0 while qn > 0. As a rule, more simple expressions are used, for instance: 

Ω(p) = 
2
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Minimization of criterion (16) ensures a desired trade-off between the goodness of fit (U is a small 
parameter) and the smoothness of the solution (Ω(p) is a small parameter). With decreasing α, both the 
quality of f([M]) approximation and the value of dampening function Ω(p) increase whereas the 
smoothness of  p(K) and numerical stability of calculations fall off. So, the attainment of a suitable 
balance is ground on the correct choice of α. There are two general ways to specify α value. The 
method of “generalized discrepancy” requires the comprehensive information about the errors of 
primary experimental data [45, 47]. Usually computations of p(K) are ambiguous because of the lack 
of this information. A more recent statistical method of cross-validation is aimed to overcome this 
demerit. 

According to [48, 49], the basic idea of the cross-validation is to estimate the predictive rather than 
the fitting ability of the model. To make the cross-validatory choice of the regularization parameter 
from the set of admissible values αmin ≤ α ≤ αmax, the following steps are required. 1) To exclude one 
observation with the number g from the original data set containing N experimental points; 2) to 
estimate unknown parameters by minimizing criterion (16) taking into account restrictions (13); 3)  to 
find the g-th cross-validatory discrepancy: 

ˆ= −g g gd f f ,                                                              (20) 

where  is computed using eq. (2) with the found density function p(K) and measured [M]ˆ
gf g; 4) to 

repeat steps 1 – 3 for all experimental points and to calculate the cross-validatory sum of residual 
squares 

2

1=
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g
U d .                                                               (21) 
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U~

 
Fig. 1. A possible dependence of the cross-validation 
criterion on the regularization parameter α. 

 
 
Fig. 1 shows the expected variation of  with α. At small α function (α) has relatively large 

values because the experimental noise affects strongly the calculated functions р(К) which are very far 
from being smooth. With increasing α function (α) decreases, reaches a minimum and then 
increases again since solutions р(К) found at high α are far from the exact one and the model is 
inadequate to describe the data. Hence, (α) must possess at least one minimum. Having found the 
position of the first minimum, one can properly choose the value of the regularization parameter α. 
Unfortunately, this fairly objective and clear method is becoming time consuming with the increase of 
the number of experimental points N. 

%U %U

%U

%U

The strategy presented above was never been used before for the characterization of the energetic 
heterogeneity. At the same time, it was successfully implemented for solving a similar problem, 
namely, the analysis of the first-order rate constant spectra [50]. 

The encouraging results were obtained by Nederlof and co-authors [22] who employed the 
Tikhonov regularization and the “generalized cross-validation” (a less time-consuming version of 
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cross-validation [51, 52]) to find a quintic spline ([M]) which fits properly primary experimental 
dependence f[M]. The spline was searched via minimizing criterion  

f%
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 is the smoothing regularizer. Instead of conditions (13), another 

restrictions following from the physical meaning of the problem were imposed on the searched spline 
function: 

( ) 1
[ ]

≥
d t M
d M

,  
2

2
( ) 0

[ ]
≤

d t M
d M

,                                                          (23) 

where t(M) is the total (analytical) concentration of the species M to be bond. Calculated  spline 
([M]) was used to find the distribution function p(K) with the aid of methods of “local isotherm 

approximation”. The technique discussed above have pretensions to calculate p(K) without the full 
information about the data errors. But it should be noted, that the unique solution of an ill-posed 
problem can not be found if the data errors are unknown [53, 53]. 

%f

The conclusion is that numerical methods of solving equation (2) may produce numerically stable 
and correct density functions p(K) if the ill-posed (essentially incorrect) nature of the problem is taken 
into account; the cross-validatory version of the α-regularization method seems to be the reliable and 
promising tool. 

 
Algorithm CAS (Computed Affinity Spectrum) 
The following question may arise in this context. If only modern complicated methods may ensure 

numerically stable and fairly exact computation of density functions p(K), why much more simple 
algorithms rising from the old Adamson and Ling graphical method [55] work well? To answer the 
question it is necessary to take into account that the Adamson-Ling’ algorithm and its further versions, 
HILDA [46] and Quasi-Adamson [30], are based on the iterative calculations of the integral 
distribution functions P(K) rather than the density ones. Estimating p(K) does not affect the 
computational process. As integral distribution functions P(K) belong to the compact set of restricted 

 and non-decreasing functions, computation of P(K) on a compact is of the 
conventionally correct nature. This manifests itself in the numerical stability of calculations. 
Estimating density function p(K) by differentiating the integral function P(K) remains the ill-posed 
problem. For this reason the mentioned algorithms may generate spurious p(K) peaks. Keeping in 
mind this interplay between the conventionally correct problem in the case of P(K) and essentially 
incorrect problem in the case of p(K), we have suggested our own algorithm for estimating the 
biographic energetic heterogeneity (its early versions were described elsewhere [56, 57]).  

(0 ( ) 1)≤ ≤P K

The use of expression (10) makes it possible to avoid the iterative procedure in calculating P(K). 
This requires to calculate the derivatives of τ(x). As τ(x) are specified by a table of values, the ill-
posed nature of the problem remains. To solve it we have to choose an approximation of measured 
τ(x) values. The simplest decision is to assume that τ(x) belongs to such analytical functions as 
polynomials, to expand τ(x) in a power-series about a point a within the x variation range, to keep first 
m terms of the expansion and to drop all the rest high-order terms: 
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Substituting expression (24) into equation (10) gives relationship to calculate P(x): 
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where Di(x) are the known functions of x: 
( 2 ) 2/ 2

0
( 1) / 2 ( 1) ( 2 1) (2 1)

0

( 1) ( ) , for even ,
( 2 1)! (2 )!

( 1) ( )( ) , for  odd  ,
( 2 )! (2 1)!

1, 0.

−

=
− + − − +

=

⎧ − π −
⋅⎪

− +⎪
⎪

− π −⎪= ⋅⎨
− +⎪

⎪ =⎪
⎪
⎩

∑

∑

l i l li

l
i l i l l

i
l

x a i
i l l

x aD x i
i l l

i

               (27) 

Hence, only numerical values of coefficients gi(a) are needed to calculate P(x). To find them the 
system of linear algebraic equations is constructed: 

1

0

(-ln[ ] )
τ( ln[ ] ) ( ) , 1,2,... ,

!

−

=

−
− = × =∑

im j
j i

i

M a
M g a j N N

i
> m ,                (28) 

where j is the number of experimental point. Now it is possible to make use the information that P(x) 
belongs to a compact set of non-descending (p(x) = d P(x) / d x ≥ 0) and restricted 

functions. From equation (26) it is easy to obtain the expression for p(x): (0 ( ) 1)≤ ≤P x
1

1
( ) ( ) ( )

−

=
= ⋅∑

N
i i

i
p x g a G x ,                                                 (29) 

where Gi(x) = dDi(x)/dx: 
( 2 )/ 2

0
( 1) / 2 ( 1) ( 2 1) (2 1)

0

( 1) , for even ,
( 2 1)!

( )
( 1) (2 1)( ) , for odd ,

( 2 )! (2 1)!

−

=
− + − − +

=

⎧ − π
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− +⎪
= ⎨

− π + −⎪ ⋅   ⎪ − +⎩

∑

∑

l i li

l
i i l i l l
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c i
i l

G x
l x a i

i l l

                 (30) 

2

0, 0,

2  ( ) , 0
(2 )!

=⎧
⎪=⎨ −

≥⎪
⎩

l

l
c l x a l

l
                                                (31) 

Imposing the following restrictions on P(ln K) and p(ln K) 
1

0
0 (ln ) ( ) ( ln[ ] ) 1, 1,2, ..., ,

−

=
≤ = ⋅ − ≤ =∑

m
i i i j

i
P K g a D M j N                     (32) 

1

1
0 (ln ) ( ) ( ln[ ] ), 1,2,..., ,

−

=
≤ = ⋅ − =∑

m
i i i j

i
p K g a G M j N                    (33) 

we apply the SVD version of the NNLS algorithm [33] to solve the least squares problem (28) subject 
to linear inequality constraints (32), (33). Thus, the function P(ln K) is calculated on the compact 
without using an iterative procedure; simultaneously, the function p(ln K) is estimated without 
additional computations.  

An important step of the algorithm is the proper choice of m value (the order of polynomial and the 
number of coefficients gi(a) to be determined). The cross-validatory search of m was included into the 
computational scheme.  
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Let us illustrate the features of the algorithm with the simulation example. For 22 pM∗T values 
distributed randomly inside interval [0; 11] the f(pM) values were calculated. The density function 
p(log K) was assumed to be the superposition of Gaussian and exponential probability functions: 

1 2(log ) ( (log ) (log )) / 2= +p K p K p K ,                                         (34) 
where 

1
exp(2 ), log 0,

(log )
0, log 0,

−   ≥⎧
= ⎨                 <⎩

x K
p K

K
,                                               (35) 

2

2
1 (log 7(log ) exp

22

⎛ ⎞−
= −⎜⎜π ⎝ ⎠

Kp K )
⎟⎟ .                                    (36) 

The normally distributed errors with zero mean and standard deviations 0.05 were introduced into 
the exact f values (Fig. 2). Then the density function was reconstructed from the obtained “pseudo-
experimental” data. In spite of the high level of the imposed errors, the calculated functions were close 
to the exact ones (Fig. 3). Only in a vicinity of the point log K = 2 where the distribution functions are 
discontinuous, the reconstructed functions approximate the model ones roughly. 

 

  
Fig. 2. Simulated binding degrees, f, versus pM. The 
solid line corresponds to the exact values, symbols • 
denote data with introduced Gaussian errors. 

Fig. 3. The density functions calculated on the 
random grid with 22 knots.  1 – the model density 
function, 2 – the function reconstructed from data 
subjected to Gaussian random errors. 

 
Algorithm based on the maximum entropy approach  
The numerical methods for solving the inverse problems of the parametric identification can be 

divided into two groups: algebraic and probabilistic methods. The algebraic methods are based on the 
maximum likelihood principle and operate through the discretization of a priori models that are 
usually specified in the form of an integral equation, differential equation and so on. After that a 
certain criterion is minimized in respect to the searched discretizated solution (this criterion 
characterizes the quality of fitting i.e. the discrepancy between the experimental and the calculated 
data). The ill-posed nature of the problem manifests itself in the existence of many possible solutions 
compatible with the experimental data, and additional (external) information is necessary to select 
only one solution. The attraction of external information about searched solution is especially difficult 
if it is presented in the form of statistic or empirical rules. Also, the algebraic methods use the least 
squares method that, in accordance with the maximum likelihood principle, supposes the Gaussian 
distribution of experimental errors. 

                                                 
∗ pM = -log [M]. 
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All methods discussed above belong to the algebraic ones. They require implicit or explicit 
assumptions about the smoothness of the searched affinity distribution p(K) and/or the distribution law 
of the experimental errors εk. Due to the immanent properties of these methods, exploring the narrow 
density functions p(K) is especially difficult. 

The probabilistic methods assume that measured responses yi are random quantities and search for 
the probability density pi(yi). This group of methods includes, particularly, the Maximum Entropy 
(maxent) approach (the genesis of these methods in connection with the algebraic ones is excellently 
discussed in [58]). This approach can be considered as a peculiar (“probabilistic”) form of 
regularization which is more natural for many experimental tasks. 

In this work we suggest a novel, more unbiased method for calculating the affinity distributions 
that is based on the formalism of the maxent approach. 

Remind that equation (2) may be rewritten without loss of generality in the discrete form (see 
equation (12)). Natural restrictions (13) follow from the physical sense of the problem. 

The maxent discrete probability density function p(K) is typically obtained by maximizing Shannon 
entropy [59] 

S  = - .                                                   (37) 
1

( ) ln ( )
J

j
j

p K p K
=

×∑ j

subjected to some known constraints: 

1
( )

=
=∑

J
kj j k

j
A p K Y ,  k = 1, 2, …, N;  N < J,                                   (38) 

where Ak,j are known coefficients and Yk are values known from an experiment or theory [60, 61]. In 
other words, experimental data are considered as restrictions imposed on the searched density function 
p(K). The routine variation problem is usually solved using the method of Lagrangian multipliers:  

0 1

( ) ˆ( ,λ) ln λ ( ) ( )
( ) =

⎧ ⎫⎪= + −⎨
⎪ ⎪⎩ ⎭

∑∫
N

k k k
kK

p KL p f f p K dK
p K

⎪
⎬ ,                             (39) 

where р0(K) is the a priori density function (as a rule, the uniform one). The solution in the stationary 
point L(p,λ) is as follows: 

0
1

1 ˆ( ;λ) ( ) exp λ
(λ) =

⎛ ⎞
= × ⎜⎜

⎝ ⎠
∑
N

k k
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p K p K f
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where 

0
1

ˆ(λ) ( ) exp λ
N

k k
kK

Z p K f d
=

⎛ ⎞
= × ⎜ ⎟⎜ ⎟

⎝ ⎠
∑∫ ,                                          (41) 

with λk found from restrictions  
ln (λ) , 1,...,
λ k

k

Z f k N∂
= =  

∂ 
.                                                 (42) 

In fact, the maxent approach allows to select the unique function p(K) from many possible ones.  
In order to use the maxent approach, we have transformed the set of equations (12) into the set of 

equations and inequalities imposed on the possible solutions p(Kj): 

1

[ ]
( )

1 [ ]=

⋅
× ≥

+ ⋅∑
J j k

j
j kj

K M
p K f

K M
−∆k , k = 1, 2, …, N,                           (43) 

1

[ ]
( )

1 [ ]=

⋅
× ≤

+ ⋅∑
J j k

j
j kj

K M
p K f

K M
−∆k , k = 1, 2, …, N,                           (44) 

1
( ) 1

=
=∑

J
j

j
p K ,  p(Kj) ≥ 0,                                                     (13) 

where the threshold value ∆ is the highest supposed value of εk. 
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To calculate p(Kj), it is necessary to maximize entropy (37) with the account of restrictions (13), 
(43), (44). The minimum possible ∆ value (∆min) is such a value that provides the compatibility of the 
system. Note, that this method does not involve any additional information on the experimental errors. 
If such information is available, it may be easily taken into consideration by the appropriate 
modification of inequalities sets (43) and (44). As usual, the computation of p(Kj) is performed by the 
method of the Lagrangian multipliers. 

Our method differs essentially from the original maxent approach. Namely, in our case the 
multiplicity of possible solutions is due to the uncertainty in ∆, while in the original method it follows 
from the incompleteness of restrictions.  

It should be noted also that several algorithms using the maxent approach to solve numerically the 
Fredholm integral equations of the first kind have been  developed [62, 63]. In these algorithms the 
Shannon entropy is used as the regularizer Ω(p) (see equation (16)). The capabilities of the entropy 
regularization methods are close to the Tikhonov α-regularization technique discussed above. 

To test the capabilities of our method the following simulation was performed. It was assumed that 
three types of binding sites are present at the sorbent surface in equal concentrations, the 
corresponding log(K) values being equal to 3, 5 and 6. So, 

p(log K = 2) =  p(log K = 5) = p(log K = 6) = 1
3

.                                   (45) 

For  22 pM values distributed randomly within range [0; 11] the f(pM) values were calculated. 
Then the random errors were introduced into the exact f(pM) values, the relative errors having the 
Gaussian or uniform distributions with zero mean values and varied standard deviations. Two 
examples of the obtained “pseudo-experimental” data are presented in Fig. 4. 

The density functions p(Kj) were calculated with the aid of the algorithm described above and the 
corresponding Smax values, the values U of criterion (11) and the minimum possible threshold values 
∆min were found. The results of calculations are systematized in Tables 1 and 2. Examples of the 
reconstructed density functions are shown in Fig. 5 – Fig. 8. It is evident that the proposed algorithm 
works rather well even in the case of very close and narrow distributions p(K) that creates an 
encouraging perspective for this method in investigating the complicated real systems. It should be 
noted, that algorithm CAS gives the unacceptably broad and, then, unsatisfactory solution even in a 
case of handling the exact f(pM) dependence (Fig. 9). 

 
Table 1. Application of the maxent algorithm to data subjected to the Gaussian errors 

sr = 0.01*

J ∆min U Smax Main peaks / corresponding p(log Kj) 
10 
50 
100 

1.2⋅10-2

9.2⋅10-3 

9.1⋅10-3

1.6⋅10-3

1.4⋅10-3

1.4⋅10-3

1.4 
1.6 
1.8 

3.1/0.36; 5.4/0.36; 6.4/0.10 

sr = 0.02 

J ∆min U Smax Main peaks / corresponding p(log Kj) 
10 
50 
100 

2.5⋅10-2 

1.9⋅10-2 

1.9⋅10-2

3.3⋅10-3

2.9⋅10-3

2.8⋅10-3

1.4 
1.3 
1.9 

3.2/0.19; 3.4/0.19; 5.6/0.51 

sr = 0.05 

J ∆min U Smax Main peaks / corresponding p(log Kj) 
10 
50 
100 

6.3⋅10-2

5.2⋅10-2

5.2⋅10-2

8.6⋅10-3

7.2⋅10-3

7.1⋅10-3

1.4 
1.8 
2.2 

3.6/0.27; 3.8/0.20; 6.0/0.20 

sr = 0.10 

J ∆min U Smax Main peaks / corresponding p(log Kj) 
10 
50 
100 

0.13 
0.11 
0.11 

1.7⋅10-2

1.8⋅10-2

1.8⋅10-2

1.2 
1.6 
1.4 

4.4/0.19; 4.6/0.54 

* sr are the relative standard deviations of errors introduced into the exact f([M])values. 
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Table 2. Application of the maxent algorithm to data subjected to the random relative errors uniformly 
distributed within range [-a; a]*

a = 0.005 

J ∆min U Smax Main peaks / corresponding p(log Kj) 
10 
50 
100 

2.9⋅10-3 

2.9⋅10-3

2.9⋅10-3

4.5⋅10-4

4.2⋅10-4

4.2⋅10-4

1.2 
1.6 
1.8 

3.0/0.31; 5.2/0.26; 6.2/0.16 

a = 0.01 

J ∆min U Smax Main peaks / corresponding p(log Kj) 
10 
50 
100 

5.8⋅10-3

5.7⋅10-3

5.7⋅10-3

8.9⋅10-4

8.5⋅10-4

8.5⋅10-4

1.2 
1.6 
2.0 

3.0/0.28; 5.2/0.35; 6.2/0.10 

a = 0.025 

J ∆min U Smax Main peaks / corresponding p(log Kj) 
10 
50 
100 

1.4⋅10-2

1.4⋅10-2

1.4⋅10-2

2.2⋅10-3

2.0⋅10-3

2.0⋅10-3

1.3 
1.5 
1.6 

3.0/0.22; 5.4/0.41; 5.6/0.14 

a = 0.05 

J ∆min U Smax Main peaks / corresponding p(log Kj) 
10 
50 
100 

2.9⋅10-2

2.9⋅10-2

2.9⋅10-2

4.4⋅10-3

3.6⋅10-3

3.7⋅10-3

1.5 
1.5 
1.6 

3.2/0.27; 5.6/0.30; 5.8/0.22 

* the relative standard deviations 
3

=r
as . 
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Fig. 4. Simulated binding degrees, f, versus pM. The 
solid line corresponds to the exact values, symbols ο 
denote data with introduced Gaussian errors (relative 
standard deviation sr = 0.01), symbols ♦ denote data 
with relative errors uniformly distributed within range 
[-0.025; +0.025].  

Fig. 5. The density function p(K) calculated on the 
uniform grid with 50 knots with the aid of the maxent 
algorithm. 1 – the model density function; 2 – the 
function reconstructed from data with introduced 
Gaussian errors (sr = 0.01). 
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Fig. 6. The density function p(K) calculated on the 
uniform grid with 50 knots with the aid of the maxent 
algorithm. 1 – the model density function;  2 – the 
function reconstructed from data with introduced 
Gaussian errors (sr = 0.05).  

Fig. 7. The density function p(K) calculated on the 
uniform grid with 50 knots with the aid of the maxent 
algorithm. 1 – the model density function; 2 – the 
function reconstructed from noisy data (relative 
random errors were distributed uniformly within 
range [-0.005; +0.005]). 

  

Fig. 8. The density function p(K) calculated on the 
uniform grid with 50 knots with the aid of the maxent 
algorithm. 1 – the model density function; 2 – the 
function reconstructed from noisy data (relative random 
errors were uniformly distributed inside interval 
[-0.025; +0.025]). 

Fig. 9. The density function p(K) calculated by 
algorithm CAS from the exact data on the uniform 
grid with 22 knots. 1 – the model density function; 
2 – the reconstructed one. 

 
 

Conclusions 
1. The solution of the first kind integral equations is the ill-posed problem, and this results in 

definite computational difficulties. To overcome them, the most prospective algebraic numerical 
methods use (i) additional information which narrows a possible set of solutions to a compact; (ii) the 
Tikhonov α-regularization technique and (iii) the cross-validation technique. The proposed algorithm 
CAS applies to all these features. It is numerically stable in computing density and integral distribution 
functions; unlike its analogs, it is non-iterative and rapid. 
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2. The method based on the maxent approach and developed as an alternative to the traditional 
procedures was shown to generate affinity distributions close to the model ones even in the case of 
narrow density functions. This feature of the method makes it prospective for studying complicated 
real systems. 
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Energetic heterogeneity of sorbents: numerical calculation of affinity distributions 

Приведен обзор численных методов расчета функций распределения сорбционных центров по 
константам сродства с компонентами растворов в модели биографической неоднородности сорбента. 
Проанализирована математически некорректная природа задачи и способы привлечения информации, 
позволяющей ограничить множество допустимых решений. Описаны разработанные авторами алгоритм 
CAS, основанный на решении условно корректной задачи расчета интегральной функции распределения, 
и алгоритм, модифицирующий применительно к рассматриваемой задаче метод максимума энтропии 
Джейниса. 
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