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Xoaun IOpuii BanenTuHoBH4Y. XWMHK, JOKTOp XHMHYECKHX HayK, mpodeccop.
Hdokrtopckast  amccepramms:  «KoIMYeCTBEHHBIH  (QU3NKO-XMMHUYECKUH  aHaJM3
KOMIUIEKCOOOpa3oBaHUsl B pacTBopax M Ha  HOBEPXHOCTH  XUMHUYECKH
MOIU(UIMPOBAHHBIX KPEMHE3EMOB: COZICPKATENbHBIE MOJEIH, MAaTeMaTHIECKUE
MeToAbl U ux npuioxerus» (2000 rox). Poguincs B 1962 rony B Xapokose. B 1984
rogy OKOHYWJI XUMHYECKMH  (akyibTeT XapbKOBCKOTO  T'OCYIapCTBEHHOTO
yauBepcutera, B 1984-1987 romax oOydwancs B acmupantype, B 1987-1991 romax
paboran crapmmMm Hay4dHbIM coTpyaHukoM HWM xumumm, ¢ 1991 roma — mouenr
xumuyeckoro (akynprera, ¢ 2001 roma— 3aBemyroumi Kadeapoil XMMHYECKOTO
MatepuanoBenerns, ¢ 2004 roma — MPOPEKTOp MO y4eOHO-METOOMUYEcKor paborte.
Co3pasl Hay4HOE HalpaBjieHHE — KOJIMYECTBEHHBIH (U3MKO-XMMHUUECKHH aHaIN3
KOMILIEKCOOOpa30BaHUsl Ha MOBEPXHOCTH (YHKIMOHAIM3UPOBAHHBIX THOPHIHBIX
MaTEpHaJIOB, B PaMKaxX KOTOPOTO ITIOJNydEeHBbI IPHOPUTETHBIC pPE3yIbTaThl B XUMUHU
(YHKIIMOHAIM3UPOBAHHBIX ~ KpeMHe3eMOB.  OCHOBHbIE = Hay4Hble  HHTEPECHIL:
¢usnyeckass W KOOPAMHAIMOHHAS XHMMHS IIOBEPXHOCTHO MOJIM(UIMPOBAHHBIX
THOpUIHBIX MaTepualoB, MPUMEHCHHE THOPHUAHBIX MaTEpHAIOB B AaHAJIU3E,
XEMOMETPHS U TEOPHUs aHaIM3a JaHHbBIX, XUMHYECKOe 00pa3oBaHHe.

Mepnblii Cepreii AjiexceeBUY. XUMUK, KaHAUIAT XUMAYECKUX HayK. KanmunaTckas
muccepranus: «Pa3paboTka, BepuHKaNUsS ¥ NMPUMEHCHHE MOJCICH, OMUCBHIBAIOIINX
paBHOBecUs ~ COpOLIMUM  KOMIIOHCHTOB  PAacTBOPOB  KOMILICKCOOOPA3YIOMIUMU
kpemaesemamu» (1997 rom). Pommncs B 1968 romy B Xappkome, B 1992 romy
3aKOHYMI XUMUYecKni (pakympTeT XaphKOBCKOTO TOCYIAapCTBEHHOTO YHHBEPCUTETA,
C JTOTO BpPEMCHH pPa0bOTacT B YHHUBEPCUTECTEC MIAANINM HAYYHBIM COTPYIHUKOM,
HAYYHBIM COTPYJHHKOM, CTapIIMM HAYYHBIM COTPYIHUKOM. [Ipe/uiokuin HOBEIC
METOIBl  peImIeHWSs HEKOPPEKTHBIX  3a]ad, BO3HUKAIOIIMX TIPH  OMHCAHUH
SHEPreTHIeCcKOW  HEOTHOPOIHOCTH  COpPOEHTOB, BHEAPWI B TPAKTHKY
KOJIMYECTBEHHOTO (DU3MKO-XMMUYECKOTO aHalln3a POOACTHBIC aJrOPUTMBI HA OCHOBE
M-onerok XbroOepa, pa3paboTan mporpaMMHOE OOECHeUeHHEe U MOJCTHPOBAHUS
paBHOBEeCHBIX cucTeM. OCHOBHBIC HAay4YHBIE HHTEPECHI: XEMOMETPH, MaTeMaTHIECKH
HEKOPPEKTHBIC 3aJa4d (U3UUECKOW XUMHH, NPUMEHEHHE TCOpPHH HH(GOpMAIU{ B
XMMHH, pOOACTHOE OLICHUBAHUC B TCOPHHU aHAJH3a JaHHBIX.

THE PHENOMENON OF ENERGETIC HETEROGENEITY AND ITS
QUANTITATIVE CHARACTERISTICS

REVIEW OF COMPUTATIONAL METHODS USED TO CHARACTERIZE THE
ENERGETIC HETEROGENEITY

ALGORITHM CAS (COMPUTED AFFINITY SPECTRUM)
ALGORITHM BASED ON THE MAXIMUM ENTROPY APPROACH

Summary. The numerical characterization of energetic heterogeneity of sorbents is
discussed. This includes the ill-posed problem of solution of the first kind integral
equations that leads to great computational difficulties. The computational methods used
in this field are compared and the ways to provide reliable solutions are marked. The
proposed non-iterative and rapid algorithm CAS allows to reduce the possible set of
solutions to a compact and applies the Tikhonov a-regularization and the cross-validation
techniques for enhancing the numerical stability of calculations. Also, a novel method
based on the maxent approach has been developed as an alternative to the traditional
procedures. The method was shown to be capable of generating affinity distributions close
to model ones even in the case of narrow density functions and noisy experimental data.
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Energetic heterogeneity of sorbents: numerical calculation of affinity distributions

The phenomenon of energetic heterogeneity and its quantitative characteristics

Physi- and chemisorption from solutions on mineral (hydr)oxides and chemically modified silicas,
binding chemical species to humic acids and another amorphous solid surfaces [1-3] are often
influenced by effects of energetic heterogeneity. In spite of the long history, the problem of estimating
the energetic heterogeneity of materials is far from being resolved. Two types of heterogeneity should
be distinguished. First of them, the biographic heterogeneity [4], is the intrinsic feature of materials. It
may be due to the inhomogeneous topography of a surface, the presence of pores of different shape
and size, the chemical heterogeneity of a surface, etc. The degree of occupation of binding sites by
bonded species does not affect the scope of biographic heterogeneity. In the contrast, if the affinity of
binding sites to fixed entity is changed in the course of sorption, this phenomenon is to be attributed to
the evolutionary heterogeneity [5]. The most common causes of it are electrostatic interactions, for
instance, changes of surface charge and electrostatic potential in dependence on the ion sorption
degree.

Here we restrict ourselves to the simplest case of monocomponent binding, namely, fixation of

species M from solution by binding centers é * which leads to the formation of sorption complexes
MQ:
_ K ___
M+Q = MQ, (1)
where K is the affinity constant.

To characterize quantitatively the effects of energetic heterogeneity one should 1) to measure the
dependence of f{[M]) on [M] where 0 < f{[M]) < 1 is a fraction of binding centers é occupied with M,
square brackets denote equilibrium concentrations of species in solution; 2) to postulate a model which
allows to separate effects of biographic and evolutionary heterogeneities and 3)to calculate

numerically the model parameters. To perform step 3 it is necessary to solve the linear first kind
Fredholm equation:

o0
S(MD=[0° (M1,K)-p(K)dK , )

0
with respect to p(K), where p(K) is the nonnegative density function of affinity constants K; the kernel
of the integral equation 0"°°*([M], K) is the local binding isotherm. The density function p(K) describes
the biographic heterogeneity, while the evolutionary heterogeneity is taken into consideration by
choosing an appropriate expression to the local isotherm. Useful characteristics of density function

p(K) are

mean value E = IKp(K) dK , 3)
0
o0
variance D= [(K -E)* p(K)dK , (4)
0
skewness A= I(K - E)3 p(K)dK . (&)
0
In addition to p(K), one can use the integral distribution function
K
P(K)= | p(x) dx, 0< P(K)< 1, (6)
0

to measure the biographic energetic heterogeneity. Up to date a lot of models have been proposed to
describe the evolutionary heterogeneity in terms of electrostatic interactions (see, for instance, ref.
[6-15]). It should be particularly emphasized that the shape of binding isotherm does not allow to

* Binding center Q is assumed to be an adsorption site on the surface of a solid sorbent, a ligand grafted
on silica surface, a functional group of humic acid and so on.
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decide what type of energetic heterogeneity or both of them take place [2]. Thus, there is no serious
experimental guideline to prefer one or another function for a local isotherm. In the limiting case when
both electrostatic and lateral interactions are negligible, the kernel 0°°“([M], K) reduces to the
Langmuir isotherm
local _ K [M]
0. K = ()
For the sake of computational simplicity, expression (7) has been adopted for the local isotherm in
our work. It is possible to validate this decision a posteriori. For this, it is necessary to measure
binding isotherms varying the ionic strength of solution (), to calculate corresponding density
functions p(K) and to compare them. If the shapes of functions p(K) and positions of maxima do not
depend significantly on /, it may be concluded that the choice of the Langmuir isotherm is justified
and effects of the evolutionary heterogeneity are negligible [16]. In the opposite case, the calculated
functions p(K) should be considered as the density functions for apparent affinity constants only. An
additional advantage of using equation (7) for the local isotherm 6" is a simple way to express the
integral distribution function P(K) in terms of primary experimental data:

M) =1 (M) = [ PoO—LH—
0 (I+K-[M])
To find exact solutions of equations (2) and (8) one has to know the analytical expression for f{[M])
and to perform the integral transformations (such as Fourier, Laplace or Stiltjes). Then, if the local
isotherm is specified by the Langmuir equation, the sought density and integral distribution functions
may be represented as follows [17-19]:

0fn) w’ S 1t f() °dW
Ox 3! 6)(;3 5! axs 7! 6)(;7

dK . (8)

p(x) = tofe InK=-In[M]> ©)

2 2 4 4 6 6
n_XG T(x)+7r_X6 T(x)_n_xa 7(x)
31 ax? 51 axt 70 ax®

Unfortunately, experimental function f{[M]) is a table of values rather than an analytical
expression. Hence, only approximate numerical methods are applicable to find distribution functions.

+

P) =1(x) - o e wmk—mp (10)

Review of computational methods used to characterize the energetic heterogeneity

As equations (2) and (8) are the first kind Fredholm integral equations, we deal with the ill-posed
problem. Main computational difficulties are connected with this.

In particular, there exist many different possible solutions p(K) which fit the measured f{[M])
values within their experimental errors. Moreover, small fluctuations in primary experimental data
([M] or f{[M])) may cause an arbitrary large fluctuations in the calculated density function p(K). Also,
oscillatory solutions with no physical meaning may easily arise. Consequently, all methods for
practical use have to reject non-realistic (negative or oscillating) functions p(K).

The approximate methods for solving equation (2) may be divided into two groups.

To avoid oscillating solutions p(K) within the methods of “local isotherm approximation”, the ill-
posed problem is transferred to a better posed one through changing the continuous local isotherm
with an approximate discontinuous (stepwise) function. Zeldowitch [20] and Roginskii [21] were first
to employ this approach. The Roginskii’s method (known also as “condensation approximation’) was
comprehensively discussed and tested [1]; till now it is the most popular and commonly used tool for
solving equation (2). During last decades the methods of “local isotherm approximation” were further
developed (see, for instance, LINA, LOGA-1, LOGA-AS approximations described by Nederlof et al.
[22, 23]). Errors resulting from using these methods have been comprehensively studied. Though the
novel approaches work better than the initial Roginskii’s method [1], narrow distributions p(K) are
always flattened and sometimes the positions of maxima are detected incorrectly [23]. Also, the use of
these methods for describing chemisorption equilibria is unfavorable from the theoretical point of
view. Actually, if the chemical binding without lateral interactions takes place (in particular, when
hydrogen or metal ions react with ligands grafted on silica surface or with functional groups of humic
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Energetic heterogeneity of sorbents: numerical calculation of affinity distributions

substances) there exists only one expression the form of which is analogous to the mass-action law.
This is the Langmuir equation.

The second group includes a wealth of general computer-oriented numerical methods. Their
employment consists in the search of a suitable balance between the goodness of fitting measured f
values and the smoothness of solutions p(K). The quality of approximation is commonly measured by
the criterion

U=Y (ii-h) - an
k=1

where £ is the number of the experimental points; N is the total number of measurements; fk is the f

value calculated for the £-th point. Solutions p(K) are found via minimization of criterion (1 1)*, while
the degree of smoothing of sought for functions p(K) is determined by peculiarities of computational
procedures.

Sometimes, the total binding isotherm A[M]) is approximated by a smooth function f([M]) with

few fitting parameters and the latter is substituted into equation (9) instead of f{[M]). A lot of
expressions (for instance, low-power polynomials, hyperbolas, cubic splines, the generalized
Freundlich, Rothemund-Kernfeld, Jowanowic-Freundlich, Toth and UNILAN isotherms, the Jaroniec
exponential equation) has been tried [24-28]. One of the most successful approaches was the
approximation of experimental f{[M]) dependence with a multi-Langmuir isotherm (as a rule, with the
bi-Langmuir one) [29, 30]. Two disadvantages of this approach are easily seen. First, the searched

solution p(K) depends highly on the choice of function f([M]) while the latter seems to be

completely arbitrary. Second, functions f([M]) have only one or two, seldom three or four fitting
parameters. As a result, sometimes measured f{[M]) values are approximated roughly, and function
p(K) is reproduced inauthentically.

The famous early algorithm CAEDMON [31, 32] approximated the integral in formula (2) by the
sum calculated for equidistant knots K. For each experimental point equation

. K [M]
Je= Y p(K)—L"" k=1,2,..,N, (12)
=

1+K; M)’
was written. Here J is the number of knots inside the interval of variation of K, K; is the value of K at
the j-th knot, p(Kj)) is the fraction of binding centers with affinity constant Kj. So, the sought for
function p(K) was found as a superposition of Dirac d-functions. The non-negative least squares
(NNLS) algorithm [33] was applied to minimize (11) in respect to p(K;). Natural restrictions

J
2. p(K;)=1, p(K))>0, (13)
j=1
did not prevent a numerical instability of computations at high J values.
General methods for solving first kind integral equations [34-36] came into use in this field. They
o0
were based on the approximation of integral I 0l ([M1,K)- p(K)dK with quadratures. The
0
algorithm CAESAR [1] as well as algorithms proposed by Leunberger and Schindler [37], Bratskaya
and Golikov [38], Garmash ef al. [39] have approximated the integral with expression
. L K [M]
J k
=y ——p(K)AK, J <N, k=12,.,N, 14
Ji ,-z_11+K,--[M]k ;) (14)
where K are equidistant within the interval [Kyn, Kimax]. To find unknown p(Kj;), the NNLS algorithm
was applied. To fit measured f{[M]) values within experimental errors it is necessary to decrease the

* Reasons to choose the sum of residual squares as the criterion to be minimized and possible alternatives
have not been discussed in the literature. Perhaps, the main reason to give preference to the least squares
estimates was connected with the desire to simplify computations to the utmost.
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integration step AK. Unfortunately, if AK is small the solution p(K) is obtained as a “saw” with big
teeth. In some cases the numerical stability of calculations was increased with the aid of the singular
values decomposition (SVD) [33] included into the NNLS algorithm [1, 37]. Using the SVD technique
has to be considered as a version of the a-regularization method (see below). Also, the discretization
of the integral was performed in the EM algorithm [40, 41], though the authors have used their own
iterative procedure instead of NNLS to compute unknown p(K;) values. It has been shown that the EM
algorithm converges and never leads to negative p(K;). Moreover, the proper guess of p(K;) prevents
oscillating solutions. The main disadvantage of this algorithm is a great number of iterations needed
for convergence (up to 200 000).

To make the problem a better posed one, some authors [26, 30, 42, 43] searched a solution for p(K)
in the form of an analytical function with few fitting parameters. In particular, p(K) was presented as a
linear combination

X
p(K) = D bi-9;(K), (15)
i=1
where ¢(K) are the Gaussian probabilities or y-functions. Their parameters and coefficients b; were
determined by the minimization of criterion (11). In some cases this heuristic approach does not
ensure accurate estimating p(K) because at small X values there is no guarantee that the chosen
approximation (15) is capable of approximating measured f{[M]) values within experimental errors,
while increasing X may cause the numerical instability of calculations. Besides, if there are many
parameters to be determined, several local minima of criterion (11) may exist, and minimization loses
unambiguity.

To handle properly the ill-posed problem and to obtain the numerically stable solutions, an
additional a priori information about the searched functions should be involved. The way to use such
information was developed by Tikhonov who proposed the general methods for solving ill-posed
problems [44]. Also, he introduced a concept of conventionally correct problems [45]. To reduce an
ill-posed problem to a conventionally correct one it is necessary to have a quantitative information
which allows to choose one solution from many possible solutions. For instance, the problem turns
into conventionally correct one if the information is available which restricts a set of possible solutions
to a compact. An example of the compact is a set of non-decreasing functions with upper and lower
bounds. The solution of a conventionally correct problem on the compact is numerically stable.

If the desired quantitative information is not available, the problem becomes an essentially
incorrect one [45]. In this case, to ensure the numerical stability of calculations it is necessary to
assume the smoothness of searched solution. Within the mentioned above numerical algorithms this is
done implicitly. In our mind, the method of Tikhonov’s a-regularization is of more objective nature.
Applying the method, one should minimize, in p(K), the new functional

Uy,=U+0a-Q(p). (16)
rather than criterion (11). Here Q(p) is a nonnegative dampening function of p(K), a is a positive
regularization parameter. As noted above, conditions (13) have to be imposed on the searched
function. House was the first who used the a-regularization method in estimating the energetic
heterogeneity [46].

In the general case of the n-order a-regularization the regularizer Q(p) is specified as follows [47]:

. 2
T d’ p(K
Q(P):_[Zq]"[p—(j)] dK , (17)
0 /=0 dK
where all coefficients g; > 0 while g, > 0. As a rule, more simple expressions are used, for instance:
0 d (K) 2
Qp)= [1p7K) + n| L2 LdK 20, (18)
0 dK
a0
Qp) = p®)ll= [ p*(K)dK . (19)
0
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Minimization of criterion (16) ensures a desired trade-off between the goodness of fit (U is a small
parameter) and the smoothness of the solution (Q(p) is a small parameter). With decreasing o, both the
quality of f{[M]) approximation and the value of dampening function Q(p) increase whereas the
smoothness of p(K) and numerical stability of calculations fall off. So, the attainment of a suitable
balance is ground on the correct choice of a. There are two general ways to specify o value. The
method of “generalized discrepancy” requires the comprehensive information about the errors of
primary experimental data [45, 47]. Usually computations of p(K) are ambiguous because of the lack
of this information. A more recent statistical method of cross-validation is aimed to overcome this
demerit.

According to [48, 49], the basic idea of the cross-validation is to estimate the predictive rather than
the fitting ability of the model. To make the cross-validatory choice of the regularization parameter
from the set of admissible values Oty < o < 0y, the following steps are required. 1) To exclude one
observation with the number g from the original data set containing N experimental points; 2) to
estimate unknown parameters by minimizing criterion (16) taking into account restrictions (13); 3) to
find the g-th cross-validatory discrepancy:

dngg_fga (20)
where fg is computed using eq. (2) with the found density function p(K) and measured [M]; 4) to

repeat steps 1 — 3 for all experimental points and to calculate the cross-validatory sum of residual
squares

N
U=Yd;. 21)

g=1
~ ¢
U

/‘/O
_e
‘\.\ -
*—eo__
accepted
I/ value

Ozamin o a
Fig. 1. A possible dependence of the cross-validation
criterion on the regularization parameter o.

Fig. 1 shows the expected variation of U with a. At small o function U (o) has relatively large
values because the experimental noise affects strongly the calculated functions p(K) which are very far
from being smooth. With increasing o function U (o) decreases, reaches a minimum and then
increases again since solutions p(K) found at high o are far from the exact one and the model is
inadequate to describe the data. Hence, U (o) must possess at least one minimum. Having found the
position of the first minimum, one can properly choose the value of the regularization parameter o.
Unfortunately, this fairly objective and clear method is becoming time consuming with the increase of
the number of experimental points V.

The strategy presented above was never been used before for the characterization of the energetic
heterogeneity. At the same time, it was successfully implemented for solving a similar problem,
namely, the analysis of the first-order rate constant spectra [50].

The encouraging results were obtained by Nederlof and co-authors [22] who employed the
Tikhonov regularization and the “generalized cross-validation” (a less time-consuming version of
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cross-validation [51, 52]) to find a quintic spline f ([M]) which fits properly primary experimental
dependence f[M]. The spline was searched via minimizing criterion

LN , [MN]{dn];[M]F
— 2 1Sk (MD = fi (M)} "+« — == d[M], (22)
e A A R

where j ———=1 d[M] 1is the smoothing regularizer. Instead of conditions (13), another
pry L dMT

restrictions following from the physical meaning of the problem were imposed on the searched spline

function:
deM)_ . d* (M)

) <0, 23
d[M] d[M7T *)

where #(M) is the total (analytical) concentration of the species M to be bond. Calculated spline
f ([M]) was used to find the distribution function p(K) with the aid of methods of “local isotherm

approximation”. The technique discussed above have pretensions to calculate p(K) without the full
information about the data errors. But it should be noted, that the unique solution of an ill-posed
problem can not be found if the data errors are unknown [53, 53].

The conclusion is that numerical methods of solving equation (2) may produce numerically stable
and correct density functions p(K) if the ill-posed (essentially incorrect) nature of the problem is taken
into account; the cross-validatory version of the a-regularization method seems to be the reliable and
promising tool.

Algorithm CAS (Computed Affinity Spectrum)

The following question may arise in this context. If only modern complicated methods may ensure
numerically stable and fairly exact computation of density functions p(K), why much more simple
algorithms rising from the old Adamson and Ling graphical method [55] work well? To answer the
question it is necessary to take into account that the Adamson-Ling’ algorithm and its further versions,
HILDA [46] and Quasi-Adamson [30], are based on the iterative calculations of the integral
distribution functions P(K) rather than the density ones. Estimating p(K) does not affect the
computational process. As integral distribution functions P(K) belong to the compact set of restricted
(0<P(K)<1) and non-decreasing functions, computation of P(K) on a compact is of the

conventionally correct nature. This manifests itself in the numerical stability of calculations.
Estimating density function p(K) by differentiating the integral function P(K) remains the ill-posed
problem. For this reason the mentioned algorithms may generate spurious p(K) peaks. Keeping in
mind this interplay between the conventionally correct problem in the case of P(K) and essentially
incorrect problem in the case of p(K), we have suggested our own algorithm for estimating the
biographic energetic heterogeneity (its early versions were described elsewhere [56, 57]).

The use of expression (10) makes it possible to avoid the iterative procedure in calculating P(K).
This requires to calculate the derivatives of t(x). As t(x) are specified by a table of values, the ill-
posed nature of the problem remains. To solve it we have to choose an approximation of measured
T(x) values. The simplest decision is to assume that t(x) belongs to such analytical functions as
polynomials, to expand t(x) in a power-series about a point a within the x variation range, to keep first
m terms of the expansion and to drop all the rest high-order terms:

)= 449 c-a 4
=0~
where coefficients
g,~<a>=(df] . 25)
X ‘x:a

Substituting expression (24) into equation (10) gives relationship to calculate P(x):
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P(x)= Zgi (a) D;(x), (26)
i=0

where Dj(x) are the known functions of x:
U2y 2D (o g
oo =20+ 2!
(D2 (LD =210 ()
20 @@-20! 2I+1)!
1 i=0.

, for even i,

D;(x) =

, for odd i, 27)

Hence, only numerical values of coefficients gi(a) are needed to calculate P(x). To find them the
system of linear algebraic equations is constructed:
m-1 (-In[M]; - a)’

1(~In[M];)= > gi(a)x , j=12,..N,N>m, (28)
i=0

i!

where j is the number of experimental point. Now it is possible to make use the information that P(x)
belongs to a compact set of non-descending (p(x)=dP(x)/dx>0) and restricted
(0 < P(x) £1) functions. From equation (26) it is easy to obtain the expression for p(x):

N-1
P = gi(a) Gx), (29)
i=1
where Gi(x) = dD(x)/dx:
12yl =20 |

205 D)! c, for even i,
=0 (i=21+1)!
Gi(x) = (i-1)/2 (D) 722D (97 4 1) — @)D (30)
- . , for odd i,
-0 (i-2D! 2+1)!
0, [=0,
= —a)* 31
=42l (x—a) 150 (1)
@n!
Imposing the following restrictions on P(In K) and p(In K)
m—1
0<P(nK)=>)_ gi(a)-D;(-In[M];)<1, j=12,..,N, (32)
i=0
m—1
0<p;(InK)= ) gi(a)-Gi(-In[M];), j=12,.,N, (33)

i=l1

we apply the SVD version of the NNLS algorithm [33] to solve the least squares problem (28) subject
to linear inequality constraints (32), (33). Thus, the function P(In K) is calculated on the compact
without using an iterative procedure; simultaneously, the function p(In K) is estimated without
additional computations.

An important step of the algorithm is the proper choice of m value (the order of polynomial and the
number of coefficients g,(a) to be determined). The cross-validatory search of m was included into the
computational scheme.
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Let us illustrate the features of the algorithm with the simulation example. For 22 pM*T values
distributed randomly inside interval [0; 11] the f{(pM) values were calculated. The density function
p(log K) was assumed to be the superposition of Gaussian and exponential probability functions:

p(log K) =(p;(log K)+ py(log K))/2, (34)
where
exp(2—x), logK >0,
log K) = , 35
pi(log K) {0’ log K <0, (35)

(log K -7)

py(log K) = J%exp( fj (36)

The normally distributed errors with zero mean and standard deviations 0.05 were introduced into
the exact f values (Fig. 2). Then the density function was reconstructed from the obtained “pseudo-
experimental” data. In spite of the high level of the imposed errors, the calculated functions were close
to the exact ones (Fig. 3). Only in a vicinity of the point log K = 2 where the distribution functions are
discontinuous, the reconstructed functions approximate the model ones roughly.

p(log K)
0.6 ]

0.3 |

pM log K

Fig. 2. Simulated binding degrees, f, versus pM. The Fig. 3. The density functions calculated on the

solid line corresponds to the exact values, symbols e random grid with 22 knots. 1 — the model density

denote data with introduced Gaussian errors. function, 2 — the function reconstructed from data
subjected to Gaussian random errors.

Algorithm based on the maximum entropy approach

The numerical methods for solving the inverse problems of the parametric identification can be
divided into two groups: algebraic and probabilistic methods. The algebraic methods are based on the
maximum likelihood principle and operate through the discretization of a priori models that are
usually specified in the form of an integral equation, differential equation and so on. After that a
certain criterion is minimized in respect to the searched discretizated solution (this criterion
characterizes the quality of fitting i.e. the discrepancy between the experimental and the calculated
data). The ill-posed nature of the problem manifests itself in the existence of many possible solutions
compatible with the experimental data, and additional (external) information is necessary to select
only one solution. The attraction of external information about searched solution is especially difficult
if it is presented in the form of statistic or empirical rules. Also, the algebraic methods use the least
squares method that, in accordance with the maximum likelihood principle, supposes the Gaussian
distribution of experimental errors.

" pM = -log [M].
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All methods discussed above belong to the algebraic ones. They require implicit or explicit
assumptions about the smoothness of the searched affinity distribution p(K) and/or the distribution law
of the experimental errors g;. Due to the immanent properties of these methods, exploring the narrow
density functions p(K) is especially difficult.

The probabilistic methods assume that measured responses y; are random quantities and search for
the probability density p,(y;). This group of methods includes, particularly, the Maximum Entropy
(maxent) approach (the genesis of these methods in connection with the algebraic ones is excellently
discussed in [58]). This approach can be considered as a peculiar (“probabilistic’) form of
regularization which is more natural for many experimental tasks.

In this work we suggest a novel, more unbiased method for calculating the affinity distributions
that is based on the formalism of the maxent approach.

Remind that equation (2) may be rewritten without loss of generality in the discrete form (see
equation (12)). Natural restrictions (13) follow from the physical sense of the problem.

The maxent discrete probability density function p(K) is typically obtained by maximizing Shannon
entropy [59]

J
S =-> p(K);xInp(K); . (37)
j=1
subjected to some known constraints:
J
ZAkjp(K)szk, k=1,2,....N; N<J, (38)

Jj=1
where A, ; are known coefficients and Y, are values known from an experiment or theory [60, 61]. In
other words, experimental data are considered as restrictions imposed on the searched density function
p(K). The routine variation problem is usually solved using the method of Lagrangian multipliers:

N ~
LX) = | {lnLK)+ > M (i —m}p(K)dK , (39)
K (K) k=1

0

where py(K) is the a priori density function (as a rule, the uniform one). The solution in the stationary
point L(p,A) is as follows:

1 N
K;\)=——p,(K)x e A , 40
p(K;)) Z(x)pO( )X Xp[}é kfk} (40)
where
N ~
Z0)=| po(K)xexp| 3 M fic |dK (41)
K k=1
with A, found from restrictions
olnZ(\)
———==f1, k=1,..,N. 42
N Ji “2)

In fact, the maxent approach allows to select the unique function p(K) from many possible ones.
In order to use the maxent approach, we have transformed the set of equations (12) into the set of
equations and inequalities imposed on the possible solutions p(K)):

S KM,
NS T B _
jZ_lp(K,) T >f,~A,k=1,2, ..., N, @)
) KM
N J = * _ _
jzzlp(Kj) 1+Kj.[M]k ka Ak=1,2,..,N, (44)
J
2. P(K =1, p(K)=0, )
j=1

where the threshold value A is the highest supposed value of ;.
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To calculate p(K)), it is necessary to maximize entropy (37) with the account of restrictions (13),
(43), (44). The minimum possible A value (A,,;) is such a value that provides the compatibility of the
system. Note, that this method does not involve any additional information on the experimental errors.
If such information is available, it may be easily taken into consideration by the appropriate
modification of inequalities sets (43) and (44). As usual, the computation of p(X)) is performed by the
method of the Lagrangian multipliers.

Our method differs essentially from the original maxent approach. Namely, in our case the
multiplicity of possible solutions is due to the uncertainty in A, while in the original method it follows
from the incompleteness of restrictions.

It should be noted also that several algorithms using the maxent approach to solve numerically the
Fredholm integral equations of the first kind have been developed [62, 63]. In these algorithms the
Shannon entropy is used as the regularizer Q(p) (see equation (16)). The capabilities of the entropy
regularization methods are close to the Tikhonov a-regularization technique discussed above.

To test the capabilities of our method the following simulation was performed. It was assumed that
three types of binding sites are present at the sorbent surface in equal concentrations, the
corresponding log(K) values being equal to 3, 5 and 6. So,

p(log K=2)= p(log K=5)=p(log K=6)= % 45)

For 22 pM values distributed randomly within range [0; 11] the f{ipM) values were calculated.
Then the random errors were introduced into the exact f{pM) values, the relative errors having the
Gaussian or uniform distributions with zero mean values and varied standard deviations. Two
examples of the obtained “pseudo-experimental” data are presented in Fig. 4.

The density functions p(K;) were calculated with the aid of the algorithm described above and the
corresponding S..x values, the values U of criterion (11) and the minimum possible threshold values
Amin were found. The results of calculations are systematized in Tables 1 and 2. Examples of the
reconstructed density functions are shown in Fig. 5 — Fig. 8. It is evident that the proposed algorithm
works rather well even in the case of very close and narrow distributions p(K) that creates an
encouraging perspective for this method in investigating the complicated real systems. It should be
noted, that algorithm CAS gives the unacceptably broad and, then, unsatisfactory solution even in a
case of handling the exact f{pM) dependence (Fig. 9).

Table 1. Application of the maxent algorithm to data subjected to the Gaussian errors

s,=0.01"
J Anin U Snax Main peaks / corresponding p(log K))
10 1.2:10° 1.6:107 1.4
50 9.2:10° 1.4-10° 1.6 3.1/0.36; 5.4/0.36; 6.4/0.10
100 9.1-10° 1.4-10° 1.8
s,=0.02
J Anmin U Shax Main peaks / corresponding p(log K))
10 2.5-107 3.3-10° 1.4
50 1.9-107 2.9-10° 1.3 3.2/0.19; 3.4/0.19; 5.6/0.51
100 1.9-10° 2.8:10° 1.9
s,=0.05
J Anin U Snax Main peaks / corresponding p(log K))
10 6.3-107 8.6-107 1.4
50 5.2:107 7.2:10° 1.8 3.6/0.27; 3.8/0.20; 6.0/0.20
100 5.2:102 7.1-107 2.2
s,=0.10
J Anmin U Shax Main peaks / corresponding p(log K))
10 0.13 1.7-107 1.2
50 0.11 1.8:107 1.6 4.4/0.19; 4.6/0.54
100 0.11 1.8:102 1.4

"s, are the relative standard deviations of errors introduced into the exact f{[M])values.
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Table 2. Application of the maxent algorithm to data subjected to the random relative errors uniformly

distributed within range [-a; al’

a=0.005
J Amin U Shax Main peaks / corresponding p(log X))
10 2.9:10° 45.10" 1.2
50 2.9:10° 42.10" 1.6 3.0/0.31; 5.2/0.26; 6.2/0.16
100 2.9-10° 42.10" 1.8
a=0.01
J Amin U Shax Main peaks / corresponding p(log X))
10 5.8:10° 8.9-10™ 1.2
50 5.7-107 8.5-10™ 1.6 3.0/0.28; 5.2/0.35; 6.2/0.10
100 5.7-10° 8.5-10™ 2.0
a=0.025
J Amin U Shax Main peaks / corresponding p(log X))
10 1.4-102 2.2:10° 1.3
50 1.4-107 2.0-10° 1.5 3.0/0.22; 5.4/0.41; 5.6/0.14
100 1.4102 2.0-10° 1.6
a=0.05
J Amin U Shax Main peaks / corresponding p(log X))
10 2.9-107 44107 1.5
50 2.9-107 3.6-10° 1.5 3.2/0.27; 5.6/0.30; 5.8/0.22
100 2.9-107 3.7-10° 1.6
* . . a
the relative standard deviations s, 5
plogK)
04-
1 2
03 \ ] /
0.2+
0.1
00 : A i
2 3 4 5 6 7

Fig. 4. Simulated binding degrees, f, versus pM. The
solid line corresponds to the exact values, symbols o
denote data with introduced Gaussian errors (relative
standard deviation s, = 0.01), symbols & denote data
with relative errors uniformly distributed within range
[-0.025; +0.025].

362

logK
Fig. 5. The density function p(K) calculated on the
uniform grid with 50 knots with the aid of the maxent
algorithm. 1 — the model density function; 2 — the
function reconstructed from data with introduced
Gaussian errors (s, = 0.01).
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p(logk) pllogk)
0.47 0.47 I
1 \ 2
0.31 \ 0.3] /
0.2 0.2 :
%
0.1 i 0.1 §
. é ?
é ; ?f
0 : il . 0 - T . T
2 3 4 5 6 7 2 3 4 3 6 7
1 og K logK
Fig. 6. The density function p(K) calculated on the Fig. 7. The density function p(K) calculated on the
uniform grid with 50 knots with the aid of the maxent uniform grid with 50 knots with the aid of the maxent
algorithm. 1 — the model density function; 2 — the algorithm. 1 — the model density function; 2 — the
function reconstructed from data with introduced function reconstructed from noisy data (relative
Gaussian errors (s, = 0.05). random errors were distributed uniformly within
range [-0.005; +0.005]).
plogk) pllogk)
T | 0.47
\ 1
\ \ /\
0.31 0.3
2
0.21 : 0.7
| *
0.1 0.17
g ] R
i " | F
0 T - 0
“ 2 4 5 6 7 2 3 4 5 6 .f
logk logk

Fig. 8. The density function p(K) calculated on the Fig. 9. The density function p(K) calculated by
uniform grid with 50 knots with the aid of the maxent algorithm CAS from the exact data on the uniform
algorithm. 1 — the model density function; 2 — the grid with 22 knots. 1 — the model density function;
function reconstructed from noisy data (relative random 2 — the reconstructed one.

errors were uniformly distributed inside interval

[-0.025; +0.025]).

Conclusions

1. The solution of the first kind integral equations is the ill-posed problem, and this results in
definite computational difficulties. To overcome them, the most prospective algebraic numerical
methods use (i) additional information which narrows a possible set of solutions to a compact; (ii) the
Tikhonov a-regularization technique and (iii) the cross-validation technique. The proposed algorithm
CAS applies to all these features. It is numerically stable in computing density and integral distribution
functions; unlike its analogs, it is non-iterative and rapid.
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2. The method based on the maxent approach and developed as an alternative to the traditional
procedures was shown to generate affinity distributions close to the model ones even in the case of
narrow density functions. This feature of the method makes it prospective for studying complicated
real systems.
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MpuBegeH 0630p uMCrEHHbIX MeToAoB pacydeTa (yHKUMIA pacnpedeneHns COpOLUMOHHBIX LIEHTPOB MO
KOHCTaHTaM CpoACTBa C KOMMOHEHTaMu pacTBOpPOB B Mogenu Guorpaduyeckon HeogHOPOAHOCTM copbeHTa.
MNpoaHanusnpoBaHa mMaTeMaTU4eCKN HEKOPPEeKTHas npupoda 3ajadn u crnocobbl npuBneveHns MHdopmauum,
No3BOMSAIOLLEN OrPaHNYNTL MHOXECTBO AOMYCTUMBbIX pelueHui. OnucaHbl pa3paboTaHHble aBTopamu anroputm
CAS, oCHOBaHHbIN Ha peLleHn YCIOBHO KOPPEKTHON 3adayn pacyeTa uHTerpansHon yHKLUKM pacnpeaeneHus,
W anropuTMm, MOAUMUUMPYIOWMIA NPUMEHUTENBHO K paccMaTpuBaemon 3afjave MeTof MakCMMyMma 3HTPonuu
[>xenHuca.
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